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PSEUDORANDOM VECTOR GENERATION 
BY THE COMPOUND INVERSIVE METHOD 

FRANK EMMERICH 

ABSTRACT. Pseudorandom vectors are of importance for parallelized simula- 
tion methods. In this paper a detailed analysis of the compound inversive 
method for the generation of k-dimensional uniform pseudorandom vectors, a 
vector analog of the compound inversive method for pseudorandom number 
generation, is carried out. In particular, periodicity properties and statisti- 
cal independence properties of the generated sequences are studied based on 
the discrete discrepancy of s-tuples of successive terms in the sequence. The 
results show that the generated sequences have attractive statistical indepen- 
dence properties for pseudorandom vectors of dimensions k < 4. 

1. INTRODUCTION 

The generation of uniform pseudorandom numbers in the interval [0,1) and of 
uniform pseudorandom vectors in the interval [0, 1)k is a basic and crucial task in 
any stochastic simulation. A review of several methods is given in Niederreiter's 
monograph [12]. Since the simple nature of the classical linear congruential method 
for the generation of pseudorandom numbers and of the matrix method for the gen- 
eration of pseudorandom vectors implies undesirable regularities (cf. [1]), several 
nonlinear methods for the generation of pseudorandom numbers and of pseudoran- 
dom vectors have been introduced [1, 2, 4, 5, 10, 11, 13]. A particularly attractive 
nonlinear approach is the inversive congruential method for the generation of pseu- 
dorandom numbers (cf. [1, 2, 5]) and the inversive method for the generation of 
pseudorandom vectors, which was introduced in [9] and is analyzed in detail in [14]. 
In [3] a compound version of the inversive congruential method for the generation 
of pseudorandom numbers was introduced in order to achieve a very long period 
length and an algorithm which allows a simple parallelized implementation. The 
analog of this approach for the generation of pseudorandom vectors, the compound 
inversive method, will be introduced and studied in this paper. 

First, the generation of pseudorandom vectors by the (ordinary) inversive method 
is described, which is due to Niederreiter [14]. Let Zn = {0, 1, ... I n-1 } for integers 
n > 1. Further, let k > 1 be an integer, the given dimension of the vectors to be 
generated. Choose a (large) prime p, and put q = pk. Denote by Fq and F* 
the finite field with q elements and its multiplicative group of nonzero elements, 
respectively. For -y c F* define -7 c F* by -y = 1, i.e., y is the multiplicative 

( 1996 American Mathematical Society 
749 

Received by the editor August 1, 1994. 
1991 Mathematics Subject Classification. Primary 65C10; Secondary lIK45. 
Key words and phrases. Uniform pseudorandom numbers, uniform pseudorandom vectors, 

inversive method, compound inversive method, statistical independence, discrete discrepancy, ex- 
ponential sums. 



750 FRANK EMMERICH 

inverse of ay in F$, and put 0 = 0. Now, parameters a, 3 C Fq with a 7& 0 are 
selected and a sequence -yo, -yi.... of elements of Fq is generated by choosing an 
initial value t/o and using the recursion 

"Yn + = cYn + 3 

for n > 0. Note that Fq can be viewed as a k-dimensional vector space over Fp (cf. 
[7, Chapter 1.4]). Let B be an ordered basis of Fq over Fp and denote by cn F k 

for n > 0 the coordinate vector of -yn C Fq relative to B. Since Fp = 2/pZ can 
be identified with the set 2p = {0, 1, ... , p - 1} of integers, each vector Cn can be 
viewed as an element of Zk. Then 

p~~~~ 
Un = -cr C [0, n )k 

p 

for n > 0 defines an inversive sequence (Un)n>O of pseudorandom vectors. 
Now, the compound inversive method for the generation of pseudorandom vectors 

is introduced. Let m = Hi=r 1 pi for an integer r > 1 and arbitrary distinct primes 
P1, I *Pr Let mi = m/pi and qi = pk for 1 < i < r. Then for 1 < i < r sequences 

(),t(i )n>O of elements of Fq, are generated by choosing an initial value t and using 
the recursion 

"Yn+l i 

for n > 0, where ai C F* and !i E Fq, are the parameters of the ith generator. 

Again, let c(') be the coordinate vector of (i) relative to an ordered basis Bi of 
Fq, over Fp, and let 

U$W) - 

1Ci) c [0, I)k 

Pi 

for n > 0. Then a compound inversive sequence (un)n>o of pseudorandom vectors 
of [O, I)k is defined by 

Un = u (1) + ***+U (r) (modl1). 

For r = 1 one has the (ordinary) inversive method, which is due to Niederreiter [14]. 
If k = 1, the compound inversive congruential method of Eichenauer-Herrmann [3] 
for the generation of pseudorandom numbers is obtained. 

In ?2 a criterion for the sequence (un)n>o having the maximum possible period 
length mk will be established. A very important property that should be asked of 
pseudorandom numbers and of pseudorandom vectors for stochastic simulations is 
the statistical independence of successive terms in the generated sequence. A reli- 
able theoretical approach for assessing statistical independence properties is based 
on the notion of discrepancy of s-tuples of successive terms in the sequence. Unfortu- 
nately, for k > 3 the discrepancy of an inversive sequence of pseudorandom vectors 
is dominated by the discretization error. So the discrete discrepancy and the. dis- 
crete star discrepancy are introduced. These discrete versions of the corresponding 
ordinary discrepancies are natural quantities, since the considered pseudorandom 
vectors are rational points with fixed denominator m (cf. [14]). The definition of 
the discrete discrepancy and of the discrete star discrepancy, as well as general dis- 
crepancy estimates, are stated in ?3. In ??5 and 6 upper and lower bounds for the 
discrete (star) discrepancy are established. These results rely heavily on bounds 
for certain rational exponential sums which are stated in ?4. 
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2. PERIOD LENGTH 

In order to obtain a criterion for the maximum possible period length mk of a 
compound inversive sequence of pseudorandom vectors, a corresponding result for 
the underlying inversive sequences is recalled from [14]. For 1 < i < r a key role is 
played by the polynomial 

Gi(x) = x2 - iX - ai E Fq, [x] 
associated with the underlying recursion in the inversive method. This polynomial 
has the factorization 

Gi (x) = (x - oi) (x - Ti) 

with nonzero roots oi, ri E Fq?, and the quotient oiT-1 of these roots is decisive in 
the criterion below, which is due to Niederreiter [14, Theorem 1]. 

Lemma 1. Let 1 < i < r. The sequence u(i) U i... of pseudorandom vectors 
generated by the inversive method has period length qi = pk if and only if the order 
of i T-1 in the multiplicative group F* is equal to qi + 1. 

In order to establish a criterion for the period length of a sequence of pseudo- 
random vectors generated by the compound inversive method, a sequence (cn)n>O 
of vectors in Zk is defined by 

cnEmic$ ?m) + + mrc$r) (modm), 

i.e., un = cn/m for n > 0. Then the sequences (cn)n>o and (Un)n>o have the 
same period length. Obviously, the sequence (cn)n>o has maximum possible period 
length mk if and only if the sequences (cn$i))n>o have maximum possible period 
length qi for 1 < i < r. Since for I < i < r the recursion = W+ is 

bijective in Fq%, the sequence (uni))n>o and also the sequence (un)n>o are always 
purely periodic. Theorem 1 summarizes these properties. 

Theorem 1. The sequence uo, ul, ... of pseudorandom vectors generated by the 
compound inversive method is always purely periodic and has period length mk if 
and only if the underlying inversive sequences (un(i))n>O of pseudorandom vectors 
have period length qi for 1 < i < r. 

In this paper it will always be assumed that the compound inversive sequence 
(Un)n>o has the maximum possible period length mk. This standing hypothesis 
will not be mentioned explicitly in the results below. 

3. GENERAL ESTIMATES FOR DISCRETE DISCREPANCIES 

As mentioned above, a reliable theoretical approach for assessing the statistical 
independence properties of a sequence of pseudorandom vectors is based on the 
discrete (star) discrepancy of s-tuples of successive terms in the sequence. Let 
Xn = M-1yn E [0, I)d for 0 < n < N, where d > l and M > 2 are integers and 
Yo,Yi,... , YN-1 E Zd are N arbitrary lattice points. For any subinterval J of 
[0, i)d, denote by L(J) the number of points among x0, xl,. .. ,xNj- falling into J 
and let Vol(J) be the d-dimensional volume of J. Then the discrete discrepancy 
EN,M of the points x0,xl,.. . I,XN-I is defined by 

EN,M = EN,M(XoX, . .1,XN-1) = SUP JN - Vol(J) 
J EJm N 
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where JM is the family of all subintervals J of [0, i)d of the form 
d 

J I[a;, c} 
Jl1 

with integers 0 < aj < c3 < M for 1 < < d. The discrete star discrepancy EN,M 

of the points xo0xl, . . ,xN1 is defined by 

E,M= E*MXO,X1, ..., XN-1) = SUP N -Vol(J) 

where JM is the family of all subintervals J of [0, i)d of the form 
d 

j=1 

with integers 0 < c1 < M for 1 < j < d. It is obvious that EN, M < EN,M 
Before general upper and lower estimates for the discrete (star) discrepancy can 

be stated, some further notation is necessary. Let Cd (M) be the set of points h = 
(hi, . . ., hd) with integer coordinates satisfying -M/2 < hj < M/2 for 1 j < d, 
and let Cd* (M) = Cd (M) \ {O}. Further, let 

r Msin(rhl/M) for h E C*(M), 
r(h, M) = lI o h=O for h = 0, 

and 
d 

r(h, M) = ]7Jr(hj, M) 
j=l 

for h = (h1, ...,hd) C Cd(M). For real t the abbreviation e(t) = e2,,t is used, and 
x * y stands for the standard inner product of x, y C Rd 

In the following, three general results for estimating discrete (star) discrepancies 
are stated. Lemmas 2 and 3 follow from [14, Lemmas 1 and 3], and Lemma 4 is 
due to Niederreiter [8, Lemma 2.3]. 

Lemma 2. Let M > 2 be an integer and yo, Y,.., YN-1 E M. Then the discrete 
discrepancy EN,M of the points xn = M-yYn E [0, I)d, 0 < n < N, satisfies 

EN,M < E S r e(h n) 
heCd (M) n=O 

Lemma 3. Let M > 2 be an integer and yo, y, . . .,YN-1 C Zd. Then the discrete 
star discrepancy EN M of the points xn = M1yn C [0, i)d, 0 < n < N, satisfies 

N-i 2 d 
Ee(h *xn) <- NENM 

for any h = (hi, . . ., hd) E Zd for which not all coordinates are divisible by M. 

Lemma 4. Let M > 2 be an integer. Then 
1 2 2 I 

<-2log M + -. 
hEC r(h,MM)<w o 5 

hEC* (M) 
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4. EXPONENTIAL SUMS 

Lemmas 2 and 3 show that a crucial role for estimating the discrete (star) dis- 
crepancy of s-tuples of successive terms in a compound inversive sequence (Un)n>O 

is played by certain exponential sums which are defined below. Subsequently, the 
ks-dimensional points 

Vn = (Un .. *, Un+s-I) [0, 1)ks 

for n > 0 and 

V ") = (Un, * **, Ut() s [ k, )s 

for n > 0 and 1 <i < r are considered, and the abbreviations 

mk_ m k-1 

S (h) =E e (h' *Vn) 
n=O 

and 
k_i 

Si (h) = - e(h v)) 
n=O 

for 1 < i < r and h c /ks will be used. Some properties of these exponential 
sums are collected in the following two results. Lemma 6 follows from [14, Proof of 
Theorem 2]. 

Lemma 5. Let h C 7ks. Then 
r 

S(h) = ]SJ(h). 
i=l 

Proof. First, it follows from vn- L vn) (mod 1) for n > 0 that 

m1k r \ mk_1 r 

S(h) = E e EZh.V$)) =ZE Je(h.v$)). 
n=O i=l n=O i=1 

Now, the Chinese Remainder Theorem implies that 
r 

S (h) = E Ie(h * v$T)). 
(ni,...,n,)EZ kX XZZpk i=1 

p1 pr 

n-=n, (rnodpk),?i<<r 

Since the sequence (v$))),,>o has period length q. = pk for 1 < i < r, one finally 
obtains 

r r r 

S(h) =l E Ie(h * VM)) = fl E e(h * vT-)) = IS(h). D 
(ni.niE)E Zk X XZ k i=1 '1l nEZ k 1=1 

Lemma 6. Let h C 7ks and 1 < K < r. Then IS, (h) pk for h 0 (mod p,) and 

S2(h) < (s - 1)(2p/2 + 1) 

for h * 0 (modp,). 
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5. UPPER BOUNDS FOR THE DISCRETE DISCREPANCY 

Theorem 2. The discrete discrepancy E(ks) = Emk m(VO V1,...,Vmk-1) satis- 
mk mm 

fies 

E(ks) 
2 

-7k k 42r Ek,m ( logm +I) (ip((s 1)(2 +P P )?P )) m )) 

for any sequence of k-dimensional pseudorandom vectors generated by the compound 
inversive method and all s > 2. 

Proof. First, Lemma 2 is applied with M = m, N = mk, d = ks, and xn = vn for 
0 < n < mk. This yields 

E (ks) < 1Sh) mk,m -nk z r (h, m) Sh 
hEC*,(m) 

mk r(h, m) J(h) 
hECk,(in) 

IC{I.....r} hEC*,(m) 
111<r h=O(modp,),iEI 

hoO(mod p,) ,if I 

where in the second step Lemma 5 has been used. Now, denote by A(h) the number 
of nonzero coordinates of h c Zks. Observe that always A(h) > 1 for h c C*s(m) 
and that S(h) = 0 for A(h) = 1. Hence, it follows that 

E(ks) < I I E r(h,i) 11 
IC{1, r} hEC%8(m) 1 

111<r h_O(modp,),iEI 
hoO(modp,),i I 

A(h)>2 

Now, Lemma 6 can be applied in order to obtain 

Emksm - m mk 
]7 (s -1)(2p + 1) 5 

r(h, m) 
IC{l,-.-,r} iE{1,- -,r} hECk8(m) 

gI <'r ifiI h=O(modp,)i,EI 
hoO(modp,),i?I 

A(h)>2 

1 k Ti (1\k ok/2,1 
< _k E mi 1i (s1-1)(2/ + 1) Z r(h, m) 

IC{1.r} tE{ .r} hEC%8(m) 
lII <r if I h=_O(modhm) 

A(h) >2 
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where mI = liEI Pi for subsets I of {1, . . ., r}. Straightforward calculations show 
that 

hEC(m) (h h EC( (m) (hm hEC (m) (hm r(hrn)- (r(mm 
h_O (mod mi) h=-O (mod mi) h=_O (mod mi) 

A(h)>2 

( 1 ~ ~ ~ 1 _ _ _ 
__~1 

k 

I 9EC*(M r(gm/m)? S r(g/)MI EC -1 

n=2~~~~~~~~~ 
ks ( 8 m n) r(g, m/m)) 

-=2 '(EnC( (rn/mi) ) I 
ks 

ks~ ~ ~~~ k 

mI( S r(g, m/mg) ) 
gEC 9E(rn/mi) i 

Hence, Lemma 4 implies that 

Z 1 ~~~~1 27k 1 27s 
E I < 2 (-~~-log(M/MI) +- < 2 (-log m+- 

rhh,mCZ28(m)2 
r 

h-O (mod mi) 
A(h)>2 

Altogether, one obtains 

k,m) mk 7-m~ 5ks2 fi (1)(2pk/2+1 
(k< )k 5 

IC{1.r} i {1.r} 

gIII<r isgI 

ioI 

= ik (3logm + )k (L(8 - 1)(2pi + 1) + pi - mk) 

= mk/2 (_iiogm+- ) (p(( --1)(2 +p.k/2) + p(k-4)/2) _ m(k-4)/2) 

which is the desired result. 

For a fixed number r of prime factors of m, Theorem 2 shows that E(kh) - 

O(m-k/2(logm)ks) for k < 4 or r = 1. For k > 5 and r > 2 the order of magni- 
tude increases, since Hi=1((s - 1)(2 +pik/2) +p(k4)/2) - m(k4)/2 has an order 
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of magnitude m(k-4)/2 in this case, where mi = m/pi and P1 = minl<i<r Pi is as- 
sumed. Then it follows that E(ks) = 0(M(k-4)/2m-k/2(logm)ks). Lower bounds mk m 

for E(ks) which will be established in the next section, show that the result of 
Theorem 2 is best possible up to the logarithmic ,factor. Further, it should be ob- 
served that this bound is independent of the specific choice of the parameters ai 
and pi in the underlying recursions provided the parameters are chosen in such a 
way that the quotient oi?-1 has order qi + 1 in the multiplicative group Fq*. It 
should also be observed that the bound is independent of the ordered basis Bi of 
Fq% over Fp*, which is used for the representation of the sequence (c(i) )n>o 

6. LOWER BOUNDS FOR THE DISCRETE DISCREPANCY 

Theorem 1 shows that a sequence of pseudorandom vectors generated by the 
compound inversive method has the maximum possible period length mk if and 
only if all underlying (ordinary) inversive sequences of pseudorandom vectors have 
maximum possible period length qi, which depends on the quotient of the roots ui, 
Ti C Fq2 of the polynomial 

Gi(x) = -x 3x- = (x- - T) 

according to Lemma 1. Since o-i + T = pi and oiOri = -ai, an easy calculation 
shows that 

(x- -) 1 (x )=x + (-~+ 2) x + 1. 

Therefore, the desired property that cri-1 has order qi + 1 in F* just depends on 

the value of /i3a?i1 E Fqi. Now, put /372cti = 4(i and let Pq, be the set of (i's for 
which the desired property is satisfied, i.e., for which x2 + ((i-1 + 2)x + 1 has roots 
of order qi + 1 in Fq*. Further, for a fixed nontrivial additive character rqi of Fq, 
and any pi, (i c Fq* put 

(yeFq, 

The following result, which is due to Niederreiter [14, Lemma 6], will be used in 
the proof of a lower bound for the discrete star discrepancy in Theorem 3 below. 
To avoid trivial cases, it will be assumed that qi = pk > 4 for 1 < i <'r. 

Lemma 7. Let 1 < i < r and rqi be a nontrivial additive character of Fq,. Then 

for any hj C Fq* and 0 < t < q there exist more than Hq, (t)(qi-1) values of 

pi E Fq* such that 

IKi(1i h) I> tql/2 

where 

H()I 1 t - 2(qi 
- 

I)-' Hqi (t) = -2+41 /2+q-' 

i 4 - t2 + 4qi ~+ q7 

Theorem 3. (i) Let k < 4. For 1 < i < r let h E Pq, and O < ti < q_3 and let 

Hq, (ti) be defined as in Lemma 7. Then for fixed underlying ordered bases of Fq, 
over Fpi there exist more than J1Ji Hq (ti) (qi -1) values of (i31, .. , 3r) E F$* X 

* . *' r F such that the discrete star discrepancy E*$) =kEs k (VO,Vl Vmk-l) 
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for any compound inversive sequence of k-dimensional pseudorandom vectors with 
ai = /3?(i satisfies 

m ,m 8(r + 1) (P ) ) 

for all s > 2. 
(ii) Let k > 5 and suppose that P1 = mini<i<rpi. Let (I c Pq1 and 0 < 

t < ? , and let Hql (t) be defined as in Lemma 7. Then for a fixed underlying 

ordered basis of Fq1 over Fpl there exist more than Hq1 (t)(qi - 1) values of/i Fc 
such that the discrete star discrepancy E 4(ks) =Emk m(vo,v1...,vmkl) for any 
compound inversive sequence of k-dimensional pseudorandom vectors with a, = 

/32(l satisfies 

E*(ks) > 
t 

m(k-4)/2 m-k/2 
mk, m -87r+ 

for all s > 2. 

Proof. First, Lemma 3 is applied with M = m, N = mik, d = ks, Xn = Vn for 
O < n < mik, and 

h = (ho, . .., hs-1) 
c zks I 

where h, = (hl,l,... , hl,k) C Zk for 0 < I< s-I with ho0, = hij = mIl = EIPi 
for an arbitrary subset I of {1, ..., r} with jII < r and all other hj = 0. This 
yields 

2 s-1 k 

IS(h)l < I ir(2rlhl,j + 1) - ImkE$ks = 8(7r + mi1 )iim Emk,ms 

10j=l 

Thus, it follows from Lemma 5 that 

E*(k) k - 8(r + m-l)M2Mk ' S(h)j >8(7r + 1)m.mk r I 

Since pi divides ho,1 = hij = ml for i c I and all other hl,j = 0, it follows that 
I Si (h) I = qi for i c I according to Lemma 6. This yields 

E(ks) > 1 fi S(h). 
mk,m -8(W?l+ )Tnkin C1 r 

i?I 

Now, let i c {1,...,r} with i , I be fixed. Let (i c Pq, and let axi = 3i2 
Subsequently, a lower bound for ISi(h)I with ho,1 = hi, = ml and all other h,j = 0 

will be established. Let (6(i),..., 6(f)) be the dual basis B1' of the fixed underlying 
ordered basis Bi of Fq, over Fpi. Further, let ai, 3i c Fq* be the parameters of the 
ith recursion. Define a nontrivial additive character Xi of Fq, by Xi (-Y) = e(p T1r(y)) 
for -y c Fqi, where Tr denotes the trace function from Fq, in Fp*. Then 

q,-l Is-1 

Si(h) = X Ai n, 
n=O 1=0 
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where = kj> h, - Fq for 0 < l < s-1 (cf. [14, Proof of Theorem 2]). 

Since ho,1 =h = ml and all other hj = 0, it follows that ,o(i) -u =Id(i) 

and ,u(i) -0 for 2 < 1 < s-1. Hence, one obtains 

q*-I 
Si(h) = X Xi(mTni 6)j( + mTi6<<i) 

n=O 

q*-1 

- EI Xi(mil6 Wtn) + mi6(< (aij;7$) + 13i)) 
n=O 

- E3 Xi(mI6~()t + mi6(i) (cxity + /3i)). 

-yC Fq, 

With rqi(y) = 2(mi6(>y) for -y C Fq, it follows that 

jSi(h) = j i(-+ai;+pi) = ( 
- 

+?aic7) 

aEFq, aEFq, 

Since ai = p32(j, one obtains 

Si (h) = j (7 + 3j2(j;7) 
-yE Fq, 

Now, by changing /371-y into -y' in the summation, one sees that 

jSi(h)j = qj3 (0'?+3ij'7') = jKi(3i,(i) 
IYEFqi 

Now, let O < ti < _ and let Hqi (ti) be defined as in Lemma 7. Then there 

exist more than Hq, (ti)(qi - 1) values of 3i E Fq*$ with 

jS (h)j = jK(C3,0( )j > tiqi2 

according to Lemma 7. Therefore, one obtains more than HijlS C r}\IHq% (ti)(qi- 1) 
values of (/3i)iE{1,...,r}\I (E iE,...,r}\I Fqi with 

E*(k s) > 1 J Jk-2 tiq /2 
mk, m -8&7r + 1)m k I j 'q 

i?I 

= 1 ~(k-42 k( 
8(7r + 1) 4)2I 11 t mk . 

( 
r} J 

(i) For k < 4 the choice I = 0, i.e., ml = 1, implies that there exist more than 
H=1 Hq%(ti)(qi - 1) values of (1, ... ,3r) E Fq* x x Fq* with 

Em 
k 

8(7r + 1) (=i 
m 
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(ii) For k > 5 the choice I = {2,... , r}, i.e., mI = mI, implies that there exist 
more than Hq, (t) (qi -1) values of 31 E Fq*, with 

E*(ks) > t (k-4)/2 k/2 
Emk,m >8(?l+ ) ml m 

Corollary 1. (i) Let k < 4. Then for fixed underlying ordered bases of Fqi over 
Fpi for 1 < i < r and any (?... (,) E Pql X x Pq, there exists a value of 

3r) Fq* x ... x Fq* such that the discrete star discrepancy E* = 

Emk m (VO vl,... Vmkl) for the sequence of k-dimensional pseudorandom vectors 
generated by the compound inversive method with cai = /3i(i satisfies 

E*(ks) 1>(3 Emkm k 8(7r + 1) KI -) m-k/2 

for all s > 2. 

(ii) Let k > 5 and suppose that P1 = minl<i<r pi. Then for a fixed underlying 

ordered basis of Fq1 over Fp, and any (i E Pq1 there exists a value 31 E F* such that 

the discrete star discrepancy E*(ks) = E*k M(vM 
v1, .l..., Vmk.l) for the sequence of 

k-dimensional pseudorandom vectors generated by the compound inversive method 

with a& = /13( satisfies 

E * (k s) > 1 - 3 (k-4)/2 - k/2 Em ,m 8(7r + 1) q, (-4)2Ik/ 

for all s > 2. 

For a fixed number r of prime factors of m, Theorem 3 and Corollary 1 imply 
that for any underlying ordered basis of Fqi over Fpi and any (i E Pqi there exist 
compound inversive generators with discrete star discrepancy Em(k9) of the order 

of magnitude at least m-k/2 for k < 4 and of the order of magnitude at least 
m(k 4)/2m-k/2 for k > 5, where ml = m/pi and P1 = minl<i<rpi. This shows 
that the order of magnitude of the upper bounds for the discrete discrepancy EMkkm 

in Theorem 2 is best possible up to the logarithmic factor. The law of the iterated 
logarithm for discrepancies [6] implies that the discrepancy of M independent and 
uniformly distributed points from [0, 1)d is almost always of an order of magnitude 
M-1/2(loglogM)1/2. A law of the iterated logarithm for discrete discrepancies 
is not yet known, but it is tempting to conjecture that such a result holds for 
the discrete discrepancy, too. In that case the lower and upper bounds for the 
discrete discrepancy in the compound inversive method for pseudorandom vector 
generation with k < 4 are in good accordance with such a result. On the other 
hand, for k > 5 (and r > 2) the lower bound for the discrete discrepancy is already 
too large compared with such a result. 

Note, that in the cases k = 1 and k = 2 similar results for the (star) discrepancy 
instead of the discrete (star) discrepancy can be established, since the order of the 
discretization error is small enough. 
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